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How to allocate services
to physical machines?

Three important metrics considered together

– FT: service fault tolerance

– BW: bandwidth usage

– #M: # machine moves to reach target allocation
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FT: Improving fault tolerance of 
software services

Complex fault domains: networking, power, cooling

Worst-case survival = fraction of service available 
during single worst-case failure

– corresponds to service throughput during failure
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FT: Service allocation impacts
worst-case survival

Worst-case survival:

– red service: 0% -- same container, power

– green service: 67% -- different containers, power
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BW: Reduce bandwidth usage 
on constrained links

BW = bandwidth usage in the core

Goal
– reduce cost of infrastructure

– consider other service location constraints
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#M: Need incremental
allocation algorithms

High cost of machine move

– need to deploy potentially TB of data

– warm up caches

– could take tens of minutes, impact network
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Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation
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Trade-off between 
bandwidth usage and fault-tolerance
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network core

agg switches

racks

BW: utilization
in core

FT: fault tolerance
(for agg switches)
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Optimizing for one metric
degrades the other

Results from 6 Microsoft datacenters
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FT-only and BW-only
are both NP-hard, hard to approximate

FT reduces to max independent set

BW reduces to min-cut in a graph

– considered previously in [Meng et al., INFOCOM’10]

Most algorithms not incremental, ignore #M
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Key insights

Improve FT using convex optimization

– local optimization leads to good solutions

Symmetry in the optimization space

– machines, racks, containers are interchangeable

Communication pattern is very skewed

– can spread low-talkers without affecting BW
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Results preview
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Results preview
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Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation
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Service communication matrix
is very sparse and skewed
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communicate

1% of services generate 
64% of traffic

(lot more in the paper)
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Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation
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Spread machines across all fault domains

– FTC negatively correlated to worst-case survival

Convex

optimization

Advantages of convex cost function

– local actions lead to improvement of global metric

– directly considers #M

service
weight

fault domain
weight

number of machines
of service s in domain f

optimizing FT and #MFT
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Keeps the current allocation feasible

– doesn’t change number of machines per service

Steepest descent swap = largest reduction in cost

Only evaluate a small, random set of swaps

– symmetry => many “good” swaps exist
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Optimizing FT, BW, and #M

Steepest descent on FTC + α BW

– non-convex

– no guarantees on reaching optimum

α determines the FT-BW trade-off

FT+BW
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Benchmark algorithm

k-way minimum graph cut

– optimizes BW only

– ignores #M

followed by steepest descent on FT+BW

FT+BWcut machine communication graph

k-way min cut
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Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation
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Evaluation setup

Simulations based on 4 production clusters

– services + machine counts

– network topology

– fault domains

– network trace from pre-production cluster

Metrics relative to initial allocation

– don’t know actual optimum

Choosing next swap takes seconds to a minute
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Evaluation

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT

25



Evaluation
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Evaluation
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Evaluation
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α changes the FT-BW tradeoff
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Summary

Trade-off between fault tolerance and bandwidth
– algorithm that achieves improvement in both

Improvements (across 4 production datacenters)
– FT: 40% – 120%
– BW: 20% – 50%
– partially deployed in Bing

Key insights
– approximate NP-hard problem using convex 

optimization
– lot of symmetry in search space
– sparse and skewed communication matrix 30
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Extensions

Hard constraints on FT, BW, #M

– e.g., pick a few services with FT>80%

Hierarchical BW optimization on agg switches

Applies to fat-tree networks
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Main observations

Most traffic generated by few services (pairs)

 spread low-talkers to improve fault-tolerance

Complex, overlapping fault domains

– hierarchical network fault-domains

– power fault domains not aligned with network

 cell: set of machines with identical fault domains
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Evaluation

Moving most of machines

Moving only fraction of machines
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Our optimization framework

Cost function considers FT and BW
– both problems NP-hard and hard to approximate
– non-convex

Cut + FT + BW:
1. minimum k-way cut of communication graph

• reshuffles all machines

2. gradient descent moves using machine swaps

FT + BW:
1. only machine swaps

• only moves small fraction of machines
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Conclusion

Study of communication patterns of Bing.com
– sparse communication matrix
– very skewed communication pattern

Principled optimization of both BW and FT
– exploits communication patterns
– can handle arbitrary fault domains

Reduction in BW: 20 – 50%
Improvement in FT: 40 – 120%
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Evaluation (1 datacenter)
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Evaluation
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Evaluation
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Evaluation
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network topology machine communication graph
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k-way graph cut

k-way min graph cut
– ignores #M: reshuffles almost all machines
– ignores FT: can’t be easily extended

min cutk-way 
min cut

BW

+
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Scaling algorithms to large 
datacenters

Only evaluate a small, random set of swaps

– symmetry => many “good” swaps exist

Cell = set of machines with same fault domains

Reduce size of communication graph for cut
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cut + steepest descent

Step 1: min-cut
– optimizes BW

Step 2: steepest descent on FTC + α BW
– non-convex

– no guarantees on reaching optimum

– α determines the trade-off

Reshuffles all machines

FT BW
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Properties of allocation algorithms

BW#MFT

FT BW

FT BW #M
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Service communication matrix
is very sparse and skewed
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lot more in the paper
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Which metrics matter?

FT: fault tolerance
– service should survive infrastructure failures

– failures despite redundancy

BW: bandwidth usage
– reduce usage on constrained links

– lower cost of infrastructure

#M: number of moves
– moving some servers is expensive

– want incremental allocation 49


