
Surviving Failures 
in Bandwidth-Constrained Datacenters

Peter Bodík2, Ishai Menache2, Mosharaf Chowdhury3, 
Pradeepkumar Mani1, Dave Maltz1, Ion Stoica3

Microsoft1 Research2, UC Berkeley3



C

A A

How to allocate services
to physical machines?

Three important metrics considered together

– FT: service fault tolerance

– BW: bandwidth usage

– #M: # machine moves to reach target allocation

service 1

service 2

service 3

+
network core

agg switches

racks

2



FT: Improving fault tolerance of 
software services

Complex fault domains: networking, power, cooling

Worst-case survival = fraction of service available 
during single worst-case failure

– corresponds to service throughput during failure

network core

switches

racks

containers

power 
distribution

3



FT: Service allocation impacts
worst-case survival

Worst-case survival:

– red service: 0% -- same container, power

– green service: 67% -- different containers, power

network core

switches

racks

containers

power 
distribution

4



BW: Reduce bandwidth usage 
on constrained links

BW = bandwidth usage in the core

Goal
– reduce cost of infrastructure

– consider other service location constraints

network core

switches

racks

containers

power 
distribution

5



#M: Need incremental
allocation algorithms

High cost of machine move

– need to deploy potentially TB of data

– warm up caches

– could take tens of minutes, impact network

network core

switches

racks

containers

power 
distribution

6



Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation

7



Trade-off between 
bandwidth usage and fault-tolerance

C

A A

network core

agg switches

racks

BW: utilization
in core

FT: fault tolerance
(for agg switches)

LOW 

LOW 

worst-case
survival 0 

optimize for
bandwidth

C

A A

HIGH 

HIGH 

0.5 

optimize for
fault tolerance

8



Optimizing for one metric
degrades the other

Results from 6 Microsoft datacenters

-80%

-40%

0%

40%

80%

120%

160%

80%60%40%20%0%-20%

reduction in BW usage

initial
allocation

allocations optimizing
only worst-case survival

allocations optimizing
only core bandwidth

GOAL!
ch

an
g

e
 in

 a
ve

ra
g

e
 w

o
rs

t-
ca

se
 s

u
rv

iv
al

9



FT-only and BW-only
are both NP-hard, hard to approximate

FT reduces to max independent set

BW reduces to min-cut in a graph

– considered previously in [Meng et al., INFOCOM’10]

Most algorithms not incremental, ignore #M

10



Key insights

Improve FT using convex optimization

– local optimization leads to good solutions

Symmetry in the optimization space

– machines, racks, containers are interchangeable

Communication pattern is very skewed

– can spread low-talkers without affecting BW

11



Results preview

-80%

-40%

0%

40%

80%

120%

160%

80%60%40%20%0%-20%

reduction in BW usage

initial
allocation

allocations optimizing
only worst-case survival

allocations optimizing
only core bandwidth

GOAL!
ch

an
g

e
 in

 a
ve

ra
g

e
 w

o
rs

t-
ca

se
 s

u
rv

iv
al

12



Results preview

-80%

-40%

0%

40%

80%

120%

160%

80%60%40%20%0%-20%

reduction in BW usage

initial
allocation

allocations optimizing
only worst-case survival

allocations optimizing
only core bandwidth

ch
an

g
e

 in
 a

ve
ra

g
e

 w
o

rs
t-

ca
se

 s
u

rv
iv

al

13



Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation

14



Service communication matrix
is very sparse and skewed

(s
u

b
se

t 
o

f)
 ~

10
0

0
 s

e
rv

ic
e

s

set of services 
forming an application

cluster manager
service

only 2% of service pairs
communicate

1% of services generate 
64% of traffic

(lot more in the paper)
15



Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation

16



Spread machines across all fault domains

– FTC negatively correlated to worst-case survival

Convex

optimization

Advantages of convex cost function

– local actions lead to improvement of global metric

– directly considers #M

service
weight

fault domain
weight

number of machines
of service s in domain f

optimizing FT and #MFT

17



Keeps the current allocation feasible

– doesn’t change number of machines per service

Steepest descent swap = largest reduction in cost

Only evaluate a small, random set of swaps

– symmetry => many “good” swaps exist

C

A A

machine swap as a basic moveFT

18



FT
 im

p
ro

ve
m

e
n

t

BW reduction

path of steepest descentFT

19



Optimizing FT, BW, and #M

Steepest descent on FTC + α BW

– non-convex

– no guarantees on reaching optimum

α determines the FT-BW trade-off

FT+BW

20



path of steepest descentFT+BW

FT
 im

p
ro

ve
m

e
n

t

BW reduction

α = 10

α = 1

21



Benchmark algorithm

k-way minimum graph cut

– optimizes BW only

– ignores #M

followed by steepest descent on FT+BW

FT+BWcut machine communication graph

k-way min cut

22



Outline

Why is it difficult?

Traffic analysis

Optimization framework

– FT + #M

– FT + BW + #M

Evaluation

23



Evaluation setup

Simulations based on 4 production clusters

– services + machine counts

– network topology

– fault domains

– network trace from pre-production cluster

Metrics relative to initial allocation

– don’t know actual optimum

Choosing next swap takes seconds to a minute
24



Evaluation

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT

25



Evaluation

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT

cut

FT+BWcut

spreading low-talkers
improves FT, 
little impact on BW

boundary for 
different values of α

26



Evaluation

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT+BW

2.3% moved

FT

cut

FT+BWcut

27



Evaluation

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT+BW

9% moved

29% moved

2.3% moved

FT

cut

FT+BWcut

28



α changes the FT-BW tradeoff

-40%

0%

40%

80%

120%

160%

60%40%20%0%-20%

Δ
FT

core BW reduction

FT+BW

9% moved

29% moved

2.3% moved







α

α

29



Summary

Trade-off between fault tolerance and bandwidth
– algorithm that achieves improvement in both

Improvements (across 4 production datacenters)
– FT: 40% – 120%
– BW: 20% – 50%
– partially deployed in Bing

Key insights
– approximate NP-hard problem using convex 

optimization
– lot of symmetry in search space
– sparse and skewed communication matrix 30



31



32



Extensions

Hard constraints on FT, BW, #M

– e.g., pick a few services with FT>80%

Hierarchical BW optimization on agg switches

Applies to fat-tree networks

33



Main observations

Most traffic generated by few services (pairs)

 spread low-talkers to improve fault-tolerance

Complex, overlapping fault domains

– hierarchical network fault-domains

– power fault domains not aligned with network

 cell: set of machines with identical fault domains

34



Evaluation

Moving most of machines

Moving only fraction of machines

35



Our optimization framework

Cost function considers FT and BW
– both problems NP-hard and hard to approximate
– non-convex

Cut + FT + BW:
1. minimum k-way cut of communication graph

• reshuffles all machines

2. gradient descent moves using machine swaps

FT + BW:
1. only machine swaps

• only moves small fraction of machines

36



Conclusion

Study of communication patterns of Bing.com
– sparse communication matrix
– very skewed communication pattern

Principled optimization of both BW and FT
– exploits communication patterns
– can handle arbitrary fault domains

Reduction in BW: 20 – 50%
Improvement in FT: 40 – 120%

37



Evaluation (1 datacenter)

-40%

0%

40%

80%

120%

160%

-60% -40% -20% 0% 20%

Δ
FT

ΔBW

optimizing
just FT

optimizing
just BW

initial
allocation

38



Evaluation

-40%

0%

40%

80%

120%

160%

-60% -40% -20% 0% 20%

Δ
FT

ΔBW

Cut+FT+BW
(moves all servers)

39



Evaluation

-40%

0%

40%

80%

120%

160%

-60% -40% -20% 0% 20%

Δ
FT

ΔBW

FT+BW+#M: 2.3%
servers moved

FT+BW

40



Evaluation

-40%

0%

40%

80%

120%

160%

-60% -40% -20% 0% 20%

Δ
FT

ΔBW

FT+BW+#M: 2.3%
servers moved

FT+BW

FT+BW+#M: 9%
servers moved

FT+BW+#M: 29%
servers moved

41



C

A A

network topology machine communication graph

C

A A

k-way graph cut

k-way min graph cut
– ignores #M: reshuffles almost all machines
– ignores FT: can’t be easily extended

min cutk-way 
min cut

BW

+

42



im
p

ro
ve

d
 F

T

reduced BW

k-way graph cutBW

43



Scaling algorithms to large 
datacenters

Only evaluate a small, random set of swaps

– symmetry => many “good” swaps exist

Cell = set of machines with same fault domains

Reduce size of communication graph for cut

44



cut + steepest descent

Step 1: min-cut
– optimizes BW

Step 2: steepest descent on FTC + α BW
– non-convex

– no guarantees on reaching optimum

– α determines the trade-off

Reshuffles all machines

FT BW

45



im
p

ro
ve

d
 F

T

reduced BW

cut + steepest descentFT BW

α = 1

α = 10

46



Properties of allocation algorithms

BW#MFT

FT BW

FT BW #M

47



Service communication matrix
is very sparse and skewed

se
rv

ic
e

s

set of services 
forming an application

cluster manager
service

only 2% of service pairs
communicate

1% of services generate 
64% of traffic

lot more in the paper
48



Which metrics matter?

FT: fault tolerance
– service should survive infrastructure failures

– failures despite redundancy

BW: bandwidth usage
– reduce usage on constrained links

– lower cost of infrastructure

#M: number of moves
– moving some servers is expensive

– want incremental allocation 49


